SKYWARN Advanced Training

Gerald Satterwhite Meteorologist

U.S. Department of Commerce National Oceanic and Atmospheric Administration (NOAA)

National Weather Service (NWS) – Calera, AL

Welcome to Advanced Spotter Training

We'll take an in-depth look at:

- Development processes and ingredients
 - Severe thunderstorm forecasting
 - Inspecting radar and satellite imagery

The Atmosphere

Large to Small Scale

- Global (Largest)
- Synoptic (Large)
- Mesoscale (Small)

Global Weather Patterns

GOES-16 Full Disk Animation

GOES-16 Full Disk Channels (16)

Synoptic Weather Patterns

Synoptic Weather Patterns: Top-down

Synoptic Weather Pattern: Low 8 **Pressure System**

SER.

Synoptic Weather Pattern: Low Pressure System, Cold Front

Cold front definition: A zone separating two air masses, of which the cooler, denser mass is advancing and replacing the warmer

Synoptic Weather Pattern: Low Pressure System, Warm Front

Warm front definition: A transition zone between a mass of warm air and the colder air it is replacing

Ridges, Troughs, and Cut-off Lows

Neutrally-Tilted Troughs

- Trough axis extends from the lowest pressure north to south
- The most common weather pattern
- Active weather occurs between the trough and downwind (eastward) ridge
- Fair weather occurs within and between the downwind trough

Positively-Tilted Troughs

Negatively-Tilted Troughs

Zonal (west to east) Flow

- Progressive motion of storm systems west to east along zonal axis
- Little north or south movement
- Cooler air north, warmer south
- Usually a positively- and negatively-tilted trough at each end

Cut-off Low

Blocking Patterns

- When weather systems set up in a way that prevents others from moving through
- Weather systems are forced to go around the block
- Result long spans of persistent weather conditions for any given area

The Storm System is Arriving: What is the NWS Up To?

Protect Life and Property

Help you make informed decisions

What's In a Sounding?

- SRH (storm-relative helicity): measure of potential for rotating updrafts in rightmoving storms
- 0-1km; 0-3km shear magnitude
- Bulk shear: Measure of deep-layer shear
- Wind vector from surface-850mb-500mb

- LCL (lifted condensation level): level at which a lifted parcel becomes saturated
- LFC (level of free convection): Level at which a parcel freely accelerates upward to equilibrium level
- EL (equilibrium level): Level at which a lifted parcel is no longer buoyant
- Lapse rates: rate of temperature change with height
- CAPE (convective available potential energy): measure of instability
- DCAPE: measure of potential strength of rain-cooled downdrafts
- CIN (convective inhibition): measure of stability
- LI (lifted index): temperature difference between 500mb temp and lifted parcel temp at 500mb

Weak vs. Strong CAPE (Convective Available Potential Energy)

Wind Shear

Change in wind speed with height

Change in wind direction with height

Change in wind speed and direction with height

- Wind shear is typically calculated in terms of speed and direction.
 The change in these is known as helicity or storm-relative helicity
- Helicity is measured at several heights. Helps determine what type of storm is likely to form/severe hazards

Warm Front

- Typically have a distinct wind shift from the south to the east across the front
- Increasing instability south of the warm front, lower north
- Wind shear highest near and north of the warm front

Cold Front

- Typically have an abrupt wind shift from the south to northwest across the front
- Unstable ahead of front, increasingly stable behind
- Wind shear highest ahead of front, lowest behind

Recall: Thunderstorm Ingredients

- Lift
 - Cold front
 - Warm front
 - Gust front,outflow boundary
 - Terrain (upslope flow)
 - Surface heating
- Moisture
- Instability

^{*}Wind Shear helps with thunderstorm organization/longevity and severity

Severe Thunderstorm Parameters **Storm Type? Severity?**

Vertical Wind Shear & SRH

- 0-6 km bulk shear > 40 kts supercells
- 0-6 km bulk shear 20-35 kts organized multicells
- 0-6 km bulk shear < 10-20 kts disorganized multicells
- 0-8 km bulk shear > 52 kts long-lived supercells
- 0-3 km bulk shear > 30-40 kts bowing thunderstorms

- 0-3 km SRH > 150 m² s⁻² = updraft rotation becomes more likely
 0-3 km SRH > 300-400 m² s⁻² = rotating updrafts and supercell development likely

BOTH

- 0-6 km shear < 35 kts with 0-3 km SRH > 150 m² s² brief rotation but not persistent
- 0-6 km shear < 35 kts any storm that acquires rotation will not persist for very long
- 0-6 km shear > 40 kts with 0-3 km SRH < 150 m² s² a supercell can still develop
- 0-6 km shear > 40 kts with 0-3 km SRH > 150 m² s² updraft rotation may be strong
- When 0-6 km shear is 30-40 kts (i.e., marginal), but the atmosphere is very unstable
- CAPE > 2500 J kg⁻¹, supercells can still form. This is especially true along low-level boundaries.

Large Hail

- -10 to -30° C layer is the hail growth zone; look for a large CAPE. within -10 to -30° C layer
- Rotating updraft the longer hail resides within hail growth zone, the greater the potential for large hail

Supercells & Hail

- Large boundary layer moisture
- 700-500 mb lapse rates > 7.0 C km⁻¹
- Moderate to large CAPE, including "fat" CAPE for rapid acceleration
- 0-6 km shear > 40-50 kts (includes speed and directional)
- 0-3 km SRH > 150-200 m² s⁻²

Hodograph:

- The 0-1 km hodograph spike is relatively straight (no curvature). Above the spike, the hodograph then displays stronger turning and curvature.
- 0-1 km bulk shear > 20 kts
- 0-1 km SRH > 150-300 m² s⁻²
- Boundary layer RH > 65%
- LCL heights ≤ 1000 m (3000 ft)
- Most of the 0-3 km SRH is concentrated in 0-1 km laver
- Low LCL heights (large boundary layer RH) favor warm RFDs and tornadogenesis
- High LCL heights (low boundary layer RH) favor cold RFDs and tornadogenesis-failure

Derechoes

- Prolonged bow echo/damaging wind events; favored in environments with high to extreme instability; fast low to mid-level unidirectional flow
- 0-3 km bulk shear > 30 kts; 0-6 km bulk shear > 40 kts

Thunderstorm Stages

- Updraft dominates

- Cumulus cloud grows vertically -Up to ~20,000 feet tall
- ~40,000 to 60,000 feet tall
- Strong updraft and downdraft coexist
- Large hail, damaging winds, tornado(es), and flooding rain may occur
- Downdraft cuts off updraft
- Rain, gusty winds, and last lightning strike
- Remnant anvil cloud aloft

Stages of Activity

GOES-16 One-Minute Imagery!!

Overall Setup

Overall Setup - Instability

Overall Setup – Wind Shear

Crossover (kt) at 500 mb, 850 mb, 10 m AGL

Reflectivity

Velocity

'Out the Window'

Dual-polarization Radar

Dual-polarization Radar

Tornado Debris

We can determine what the radar is sampling based off horizontal/vertical ratios. Weather-related, or not?

Dual-polarization Radar

- Radar has to distinguish between multiple targets within a bin
- It calculates the ratios of the targets
- When several kinds of targets are within a bin and their ratios are not correlated, the CC of the bin is lowered

Tornado Debris Signature (TDS)

Three-Body Scatter Spike

Scatter Spike

Three-Body Scatter Spike; Hail Core 53 at X Feet Above Ground Level

Bounded Weak Echo Region (BWER)

BWER at X Feet Above Ground Level

Below the Radar Beam? Spotters Help Tell the Story

Radar tells us the storm is capable of producing strong winds, hail, and/or a tornado

Spotters help confirm if the storm is producing damaging winds, hail, and/or a tornado

Important Definitions

Anticipated weather hazards during the next 7 days. Issued daily and updated as needed.

[Keep Tabs] ... Ready

Atmospheric conditions are favorable, or could become favorable, for the development of thunderstorms which could produce severe weather. [Remain Alert] ... Set

Severe weather is occurring, or is likely to occur. [Take protective action] ... GO!

Storm Prediction Center (SPC) Convective Outlook

Storm Prediction Center Severe Weather Outlook

Understanding Severe Thunderstorm Risk Categories

THUNDERSTORMS (no label)

No severe* thunderstorms expected

Lightning/flooding threats exist with all thunderstorms 1 - MARGINAL (MRGL)

Isolated severe thunderstorms possible

Limited in duration and/or coverage and/or intensity

2 - SLIGHT (SLGT)

Scattered severe storms possible

Short-lived and/or not widespread, isolated intense storms possible 3 - ENHANCED (ENH)

Numerous severe storms possible

More persistent and/or widespread, a few intense

4 - MODERATE (MDT)

Widespread severe storms likely

Long-lived, widespread and intense 5 - HIGH (HIGH)

Widespread severe storms expected

Long-lived, very widespread and particularly intense

- Winds to 40 mph
- · Small hail

- Winds 40-60 mph
- Hail up to 1"
- · Low tornado risk

- One or two tornadoes
- Reports of strong winds/wind damage
- Hail ~1", isolated 2"

- A few tornadoes
- Several reports of wind damage
- Damaging hail, 1 2"

- Strong tornadoes
- Widespread wind damage
- Destructive hail, 2"+

- Tornado outbreak
- Derecho

^{*} NWS defines a severe thunderstorm as measured wind gusts to at least 58 mph, and/or hail to at least one inch in diameter, and/or a tornado. All thunderstorm categories imply lightning and the potential for flooding. Categories are also tied to the probability of a severe weather event within 25 miles of your location.

What Makes a Storm Severe?

- Wind gusts of 58 MPH
 or greater, and/or
- Hail 1 inch or more in diameter

Severe Thunderstorm

Warning is issued for potential of this occurring, or if observed

 A tornado also makes a storm severe

Lightning does not make a thunderstorm severe

Tornado Warning is issued for potential of this occurring, or if observed

Reporting Options Recap

- Call the NWS office: 205-664-3010, option 2
- Social media: Twitter, Facebook
- Our webpage: 'Submit a Storm Report' page
- Photos of what you're seeing/detailed follow-up are great, too!

SR-BMX.Pix@noaa.gov

- Snapshot of a funnel, wall cloud, flooding, etc.
- Hail, wind damage (trees, buildings, etc.)

Don't use e-mail for urgent reports!

Additional Materials

Visit our Skywarn spotter page for useful links and information: weather.gov/bmx/skywarnschedule

Advanced spotter certificates

www.weather.gov/bmx/advancedspottertraining

- Spotter schedule
- Training materials
- Brochures and guides

SKYWARN Advanced Training Gerald Satterwhite Meteorologist

U.S. Department of Commerce
National Oceanic and Atmospheric Administration (NOAA)
National Weather Service (NWS) – Calera, AL

Questions, Suggestions, or Comments?
Gerald.Satterwhite@noaa.gov

We thank you for your participation!

Keep your eye in the sky!

